Calculation of Steady-State Evaporation for an Arbitrary Matric Potential at Bare Ground Surface
نویسندگان
چکیده
Evaporation from soil columns in the presence of a water table is a long lasting subject that has received great attention for many decades. Available analytical studies on the subject often involve an assumption that the potential evaporation rate is much less than the saturated hydraulic conductivity of the soil. In this study, we develop a new semi-analytical method to estimate the evaporation rate for an arbitrary matric potential head at bare soil surface without assuming that the potential evaporation rate is much less than the saturated hydraulic conductivity of the soil. The results show that the evaporation rates calculated by the new solutions fit well with the HYDRUS-1D simulation. The new solutions also can reproduce the results of potential evaporation rate calculated from previous equations under the special condition of an infinite matric potential head at bare soil surface. The developed new solutions expand our present knowledge of evaporation estimation at bare ground surface to more general field conditions.
منابع مشابه
Dripping into subterranean cavities from unsaturated fractures under evaporative conditions
Water dripping into subterranean cavities within fractured porous media is studied in order to improve estimates of dripping rates, drop sizes, and chemical composition of droplets that could affect long-term integrity of waste disposal canisters placed in caverns. Steady state liquid flux in fracture surfaces supported by flow in partially liquid-filled grooves and liquid films in adjacent pla...
متن کاملSteady State Analysis of Nanofuel Droplet Evaporation
The potential for nanofuels as one of the clean sources of energy on account of its enhanced combustion performance coupled with low emissions has been established. Considering the importance of the fuel evaporation phase in the entire combustion process, this work presents an attempt at applying the steady state analysis equations to nanofuel experimental data obtained from the li...
متن کاملAn analytical model of evaporation efficiency for unsaturated soil surfaces with an arbitrary thickness
Analytical expressions of evaporative efficiency over bare soil (defined as the ratio of actual to potential soil evaporation) have been limited to soil layers with a fixed depth and/or to specific atmospheric conditions. To fill the gap, a new analytical model is developed for arbitrary soil thicknesses and varying boundary layer conditions. The soil evaporative efficiency is written [0.5 − 0....
متن کاملCombining the Penman-Monteith equation with measurements of surface temperature and reflectance to estimate evaporation rates of semiarid grassland
The Penman-Monteith equation is useful for computing evaporation rates of uniform surfaces, such as dense vegetation or bare soil. This equation becomes less useful for evaluation of evaporation rates at the regional scale, where surfaces are generally characterized by a patchy combination of vegetation and soil. This is particularly true in the arid and semi-arid regions of the world. The appr...
متن کاملSurface Modification of Glassy Carbon Electrode by Ni-Cu Nanoparticles as a Competitive Electrode for Ethanol Electro-Oxidation
In the present study, Nickel-Copper nanoparticles were electrodeposited on glassy carbon electrode (GCE) by using electroplating deposition method. The prepared electrode was characterized by scanning electron microscopy (SEM) and elemental mapping analysis. Results showed that Ni-Cu nanoparticles with a high density are distributed at the surface of the glassy carbon electrode. Subsequentl...
متن کامل